欢迎来到莲山课件网!
我要投稿

您当前的位置:

还剩17页未读,点击继续阅读

收藏

举报

申诉

分享:

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档有教师用户上传,莲山课件网负责整理代发布。如果您对本文档有争议请及时联系客服。
3. 部分文档可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

资料简介

展开

12.2三角形全等的判定(2)创设情景因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。怎样测出A、B两杆之间的距离呢?。AB知识回顾三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF用 数学语言表述:在△ABC和△DEF中∴ △ABC ≌△ DEF(SSS)AB=DEBC=EFCA=FD探究1对于三个角对应相等的两个三角形全等吗?ABCDE如图, △ABC和△ADE中,如果DE∥AB,则∠A=∠A,∠B=∠ADE,∠C= ∠ AED,但△ABC和△ADE不重合,所以不全等。三个角对应相等的两个三角形不一定全等做一做:画△ABC,使AB=3cm,AC=4cm。画法:2.在射线AM上截取AB= 3cm3.在射线AN上截取AC=4cm这样画出来的三角形与同桌所画的三角形进行比较,它们互相重合吗?若再加一个条件,使∠A=45°,画出△ABC1.画∠MAN= 45°4.连接BC∴△ABC就是所求的三角形把你们所画的三角形剪下来与同桌所画的三角形进行比较,它们能互相重合吗?探究2问:如图△ABC和△DEF中,AB=DE=3 ㎝,∠B=∠ E=300,BC=EF=5 ㎝则它们完全重合?即△ABC≌△ DEF?3㎝5㎝300ABC3㎝5㎝300DEF问:如图△ABC和△DEF中,AB=DE=3 ㎝,∠B=∠ E=300,BC=EF=5 ㎝则它们完全重合?即△ABC≌△ DEF?3㎝5㎝300ABC3㎝5㎝300DEF三角形全等判定方法用符号语言表达为:在△ABC与△DEF中AB=DE∠B=∠EBC=EF∴△ABC≌△DEF(SAS)ABCDEF两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”分别找出各题中的全等三角形ABC40°40°DEF(1)DCAB(2)△ABC≌△EFD根据“SAS”△ADC≌△CBA根据“SAS”练一练已知:如图,AB=CB,∠ABD= ∠ CBD△ ABD和△CBD全等吗?分析:△ ABD ≌△ CBD边:角:边:AB=CB(已知)∠ABD= ∠CBD(已知)?ABCD(SAS)现在例1的已知条件不改变,而问题改变成:问AD=CD,BD平分∠ADC吗?怎么证明例一已知:如图,AB=CB,∠ABD= ∠ CBD。问AD=CD,BD平分∠ADC吗?ABCD例题变式1ABCD已知:AD=CD,BD平分∠ADC。问∠A=∠ C吗?例题变式2ABCDO补充题:1 .如图AC与BD相交于点O,已知OA=OC,OB=OD,说明△AOB≌△COD的理由。2.如图,AC=BD,∠CAB= ∠DBA,你能判断BC=AD吗?说明理由。ABCD归纳:判定两条线段相等或二个角相等可以通过从它们所在的两个三角形全等而得到。问题解决因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。请你设计一种方案,粗略测出A、B两杆之间的距离。。AB小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE的长,这个长度就等于A,B两点的距离。请你说明理由。AC=DC ∠ACB=∠DCEBC=EC△ACB≌△DCEAB=DE想一想小明做了一个如图所示的风筝,其中∠EDH=∠FDH, ED=FD,将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同桌进行交流。EFDH△EDH≌△FDH根据“SAS”,所以EH=FH想一想以2.5cm,3.5cm为三角形的两边,长度为2.5cm的边所对的角为40°,情况又怎样?动手画一画,你发现了什么?ABCDEF2.5cm3.5cm40°40°3.5cm2.5cm结论:两边及其一边所对的角相等,两个三角形不一定全等探究3猜一猜:是不是二条边和一个角对应相等,这样的两个三角形一定全等吗?你能举例说明吗?如图△ABC与△ABD中,AB=AB,AC=BD, ∠B=∠B他们全等吗?BACD注:这个角一定要是这两边所夹的角课堂小结:2.用尺规作图:已知两边及其夹角的三角形画三角形1.三角形全等的条件,两边和它们的夹角对应相等的两个三角形全等(边角边或SAS)3、会判定三角形全等1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.作业布置

扫描关注二维码

更多精彩等你来

客服服务微信

55525090

手机浏览

微信公众号

Copyright© 2006-2020 主站 www.5ykj.com , All Rights Reserved 闽ICP备12022453号-30

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,

如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。