欢迎来到莲山课件网!
我要投稿

您当前的位置:

2020秋八年级数学上册第十一章三角形11.2.1三角形的内角教学课件1

ID:194674

页数:25页

大小:1.09MB

时间:2020-09-19

收藏

还剩22页未读,点击继续阅读

收藏

举报

申诉

分享:

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档有教师用户上传,莲山课件网负责整理代发布。如果您对本文档有争议请及时联系客服。
3. 部分文档可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

资料简介

展开

新人教版-八年级(上)-数学-第十一章11.2.1三角形的内角学习目标:重点 :难点:1、会阐述三角形内角和定理。2、会应用三角形内角和定理进行计算;(求三角形的角的度数)3、能通过动手实践去验证三角形的内角和定理。1、能用多种方法证明三角形内角和定理2、会在证明中添加合适的辅助线。通过对三角形内角和定理内容的学习,会利用它解决生活实际中一些简单的有关角度计算的问题。三角形两边的夹角叫做三角形的内角三角形的内角在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷。同学们,你们知道其中的道理吗?内角三兄弟之争如下图所示是我们常用的三角板,它们的三个角之和为多少度?想一想:任意三角形的三个内角之和也为180度吗?30+60+90=18045+45+90=180思考与探索三角形的三个内角和是多少?把三个角拼在一起试试看?你有什么办法可以验证呢?从刚才拼角的过程你能想出证明的办法吗?180°实践操作21EDCBA三角形的内角和等于1800.延长BC到D,于是CE∥BA(内错角相等,两直线平行).∴∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°在△ABC的外部,以CA为一边,CE为另一边作∠1=∠A,证法一21EDCBA三角形的内角和等于1800.延长BC到D,过C作CE∥BA,∴ ∠A=∠1(两直线平行,内错角相等)∠B=∠2(两直线平行,同位角相等)∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°证法二F21ECBA三角形的内角和等于1800.过A作EF∥BC,∴∠B=∠2(两直线平行,内错角相等)∠C=∠1(两直线平行,内错角相等)∵∠2+∠1+∠BAC=180°∴∠B+∠C+∠BAC=180°证法三CBEA三角形的内角和等于1800.过A作AE∥BC,∴∠B=∠BAE(两直线平行,内错角相等)∠EAB+∠BAC+∠C=180°(两直线平行,同旁内角互补)∴∠B+∠C+∠BAC=180°证法四在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。为了证明三个角的和为1800,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.思路总结(口答)下列各组角是同一个三角形的内角吗?为什么?(2)60°,40°,90°(3)30°,60°,50°(1)3°,150°,27°(是)(不是)(不是)巩固练习(1)在△ABC中,∠A=35°,∠B=43 °则∠C=.(2)在△ABC中, ∠A :∠B:∠C=2:3:4则∠A =∠ B=∠ C=.(3)一个三角形中最多有个直角?为什么?(4)一个三角形中最多有个钝角?为什么?(5)一个三角形中至少有个锐角?为什么?(6)任意一个三角形中,最大的一个角的度数至少为.102 °80 °60 °40 °60°211应用新知ABC已知△ABC中,∠ABC=∠C=2∠A ,BD是AC边上的高,求∠DBC的度数。D解:设∠A=x0,则∠ABC=∠C=2x0∴x+2x+2x=180(三角形内角和定理)解得x=36∴∠C=2×360=720∴∠DBC=1800-900-720(三角形内角和定理)在△BDC中,∵∠BDC=900(三角形高的定义)∴∠DBC=180?例题讲解1如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向。求下面各题.(1)∠DAC=_____ ∠DAB=______ ∠EBC=_______∠CAB=______A(2)从C岛看A、B两岛的视角∠C是多少?50°80°40°DBCE北北解:∵AD∥BE∴ ∠DAB﹢∠ABE=180°∴∠ABE=180°-∠DAB=180°-80°=100°在△ABC中,∠C=180°- ∠CAB- ∠ABC=180°-30 °-60 °=90°∴∠ABC=∠ABE﹣∠CBE30 °=100°﹣40°=60°例题讲解2DCE北A50°∟B40°北MN在△AMC中 ∠AMC=90°, ∠MAC=50°解:过点C画MN⊥AD分别交AD、BE于点M、N12例:如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向。∴∠1=180 °-90°-50° =40°∵ AD∥BE∴ ∠AMC+ ∠BNC =180 °∴ ∠BNC =90°同理得∠2 =50°∴ ∠ACB =180 ° -∠1 -∠2=180 °-40°-50° =90°例题讲解2BDCE北A你能想出一个更简捷的方法来求∠C的度数吗?1250°40°解: 过点C画CF∥AD ∴ ∠1=∠DAC=50 °,F∵ CF∥AD,又AD ∥BE∴ CF∥ BE∴∠2=∠CBE=40 °∴ ∠ACB=∠1﹢∠2=50 °﹢ 40 °=90 °例题讲解2解:在△ACD中∠CAD=30 ° ∠D=90 °DABC∴ ∠ACD =180 ° -30 ° -90 °=6 0 °在△BCD中∠CBD = 45 ° ∠D=90 °∴ ∠BCD = 180 °- 90°-45 °=45 °∴ ∠ACB = ∠ACD - ∠BCD = 6 0 °- 45 °巩固练习1.如图,从A处观测C处时仰角∠CAD=30°,从B处观测C处时仰角∠CBD=45°.从C处观测A、B两处时视角∠ACB是多少?2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是( )(A)带①去    (B)带②去     (C)带③去    (D)带①和②去C巩固练习3.△ABC中,若∠A+∠B=∠C,则△ABC是( )A、锐角三角形 B、直角三角形C、钝角三角形 D、等腰三角形4.一个三角形至少有( )A、一个锐角B、两个锐角C、一个钝角D、一个直角BB巩固练习5.如图△ABC中,CD平分∠ACB,DE∥BC,∠A=70°,∠ADE=50°,求∠BDC的度数.ABCDE解:∵∠A=70°∴∠ACB=180°-∠A-∠B=180°-70°-50°=60°∵DE//BC∴∠B=∠ADE=50°∵CD平分∠ACB巩固练习甲楼高16米,乙楼座落在甲楼的正北面,已知当地冬至中午12点,太阳光线与水平面夹角为450,如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应是多少?甲乙16米450?45016米解:由题意知ABC∴BC=AB=16答:两楼的距离是16米.拓展与思考12、在△ABC中,如果∠A=∠B= ∠ C,那么△ABC是什么三角形?解:设∠A=x°,那么∠B=2x°,∠C=3x°根据题意得:解得∴∠A=30°,∠B=60°,∠C=90°所以△ABC是直角三角形拓展与思考2小结1、三角形的内角和:三角形三个内角之和为180°2、由三角形内角和等于180°,可得出(1)、直角三角形两锐角互余;(2)、一个三角形最多有一个直角或钝角;(3)、任意一个三角形中,最多有三个锐角,最少有两个锐角;(4)、一个三角形中至少有一个角小于或等于60°3、三角形按角分类:三角形直角三角形斜三角形锐角三角形钝角三角形祝同学们学习进步再见

扫描关注二维码

更多精彩等你来

客服服务微信

55525090

手机浏览

微信公众号

Copyright© 2006-2020 主站 www.5ykj.com , All Rights Reserved 闽ICP备12022453号-30

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,

如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。