2016八上2.1认识无理数(2)课件导学案练习(北师大)

点击下载课件:下载地址1
课件简介:
  • 课件名称: 2016八上2.1认识无理数(2)课件导学案练习(北师大)
  • 课件科目: 八年级数学课件
  • 制作软件: PPT/FLASH/其他
  • 授权方式: 免费
  • 下载次数总计: 
  • 更新时间: 2016年08月18日
  • 本站永久域名: www.5ykj.com
  • 联系管理员: 13807847103。
    QQ:280719422

2.1认识有理数 (2)
教学目标
知识与技能:
1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.
2.会判断一个数是有理数还是无理数.
过程与方法:
1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.
2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.
情感态度与价值观:
1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.
2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.
教学重点
1.无理数概念的探索过程.
2.用计算器进行无理数的估算.
3.了解无理数与有理数的区别,并能正确地进行判断.
教学难点
1.无理数概念的建立及估算.
2.用所学定义正确判断所给数的属性.
教学过程
一、创设问题情境,引入新课
[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.
二、讲授新课
1.导入:[师]请看图
 
大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.
[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.
[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?
[生]因为a2大于1且a2小于4,所以a大致为1点几.
[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.
[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.
[生]因为1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.
[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.
[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.
[生]我的探索过程如下.
边长a 面积S
1<a<2 1<S<4
1.4<a<1.5 1.96<S<2.25
1.41<a<1.42 1.9881<S<2.0164
1.414<a<1.415 1.999396<S<2.002225
1.4142<a<1.4143 1.99996164<S<2.00024449
[师]还可以继续下去吗?
[生]可以.
[师]请大家继续探索,并判断a是有限小数吗?
[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.
[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)
[生]b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.
[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.
[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.
2.无理数的定义
请大家把下列各数表示成小数.
3, ,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.
[生]3=3.0, =0.8, = ,
 ,
[生]3, 是有限小数, 是无限循环小数.
[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.
像上面研究过的a2=2,b2=5中的a,b是无限不循环小数.
无限不循环小数叫无理数(irrational number).
除上面的a,b外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.
3.有理数与无理数的主要区别
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式,而无理数则不能.
4.例题讲解
下列各数中,哪些是有理数?哪些是无理数?
3.14,- , ,0.1010010001…(相邻两个1之间0的个数逐次加1).
解:有理数有3.14,- , .  无理数有0.1010010001….
三、课堂练习
(一)随堂练习
下列各数中,哪些是有理数?哪些是无理数?
0.4583, ,-π,- ,18.
解:有理数有0.4583, ,- ,18.    无理数有-π.
(二)补充练习
投影片
判断题
(1)有理数与无理数的差都是有理数.
(2)无限小数都是无理数.
(3)无理数都是无限小数.
(4)两个无理数的和不一定是无理数.
解:(1)错.例π-1是无理数.
(2)错.例 是有理数.
(3)对.因为无理数就是无限不循环小数,所以是无限小数.
(4)对.因为两个符号相反的无理数之和是有理数.例π-π=0.
投影片
下列各数中,哪些是有理数?哪些是无理数?
0.351,- ,3.14159,-5.2323332…,123456789101112…(由相继的正整数组成).

解:有理数有0.351,- ,3.14159,
无理数有-5.2323332…,123456789101112….
投影片(§2.1.2 C)
在下列每一个圈里,至少填入三个适当的数.
 


[生]有理数集合填0, ,-3.
无理数集合填-π,- π,0.323323332….
四、课时小结
本节课我们学习了以下内容.
1.用计算器进行无理数的估算.
2.无理数的定义.
3.判断一个数是无理数或有理数.
五、作业:习题2.2  2、3题。